metabelian, supersoluble, monomial
Aliases: C32⋊1D27, C33.1D9, C27⋊S3⋊1C3, C3.(C27⋊C6), (C3×C27)⋊1C6, C9.4(C9⋊C6), C32⋊C27⋊2C2, C3.1(C3×D27), (C32×C9).8S3, C9.3(C32⋊C6), C32.14(C3×D9), C3.1(C32⋊D9), (C3×C9).54(C3×S3), SmallGroup(486,17)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C27 — C32⋊D27 |
Generators and relations for C32⋊D27
G = < a,b,c,d | a3=b3=c27=d2=1, cac-1=ab=ba, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
(2 79 39)(3 40 80)(5 55 42)(6 43 56)(8 58 45)(9 46 59)(11 61 48)(12 49 62)(14 64 51)(15 52 65)(17 67 54)(18 28 68)(20 70 30)(21 31 71)(23 73 33)(24 34 74)(26 76 36)(27 37 77)
(1 78 38)(2 79 39)(3 80 40)(4 81 41)(5 55 42)(6 56 43)(7 57 44)(8 58 45)(9 59 46)(10 60 47)(11 61 48)(12 62 49)(13 63 50)(14 64 51)(15 65 52)(16 66 53)(17 67 54)(18 68 28)(19 69 29)(20 70 30)(21 71 31)(22 72 32)(23 73 33)(24 74 34)(25 75 35)(26 76 36)(27 77 37)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 81)(36 80)(37 79)(38 78)(39 77)(40 76)(41 75)(42 74)(43 73)(44 72)(45 71)(46 70)(47 69)(48 68)(49 67)(50 66)(51 65)(52 64)(53 63)(54 62)
G:=sub<Sym(81)| (2,79,39)(3,40,80)(5,55,42)(6,43,56)(8,58,45)(9,46,59)(11,61,48)(12,49,62)(14,64,51)(15,52,65)(17,67,54)(18,28,68)(20,70,30)(21,31,71)(23,73,33)(24,34,74)(26,76,36)(27,37,77), (1,78,38)(2,79,39)(3,80,40)(4,81,41)(5,55,42)(6,56,43)(7,57,44)(8,58,45)(9,59,46)(10,60,47)(11,61,48)(12,62,49)(13,63,50)(14,64,51)(15,65,52)(16,66,53)(17,67,54)(18,68,28)(19,69,29)(20,70,30)(21,71,31)(22,72,32)(23,73,33)(24,74,34)(25,75,35)(26,76,36)(27,77,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62)>;
G:=Group( (2,79,39)(3,40,80)(5,55,42)(6,43,56)(8,58,45)(9,46,59)(11,61,48)(12,49,62)(14,64,51)(15,52,65)(17,67,54)(18,28,68)(20,70,30)(21,31,71)(23,73,33)(24,34,74)(26,76,36)(27,37,77), (1,78,38)(2,79,39)(3,80,40)(4,81,41)(5,55,42)(6,56,43)(7,57,44)(8,58,45)(9,59,46)(10,60,47)(11,61,48)(12,62,49)(13,63,50)(14,64,51)(15,65,52)(16,66,53)(17,67,54)(18,68,28)(19,69,29)(20,70,30)(21,71,31)(22,72,32)(23,73,33)(24,74,34)(25,75,35)(26,76,36)(27,77,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,81)(36,80)(37,79)(38,78)(39,77)(40,76)(41,75)(42,74)(43,73)(44,72)(45,71)(46,70)(47,69)(48,68)(49,67)(50,66)(51,65)(52,64)(53,63)(54,62) );
G=PermutationGroup([[(2,79,39),(3,40,80),(5,55,42),(6,43,56),(8,58,45),(9,46,59),(11,61,48),(12,49,62),(14,64,51),(15,52,65),(17,67,54),(18,28,68),(20,70,30),(21,31,71),(23,73,33),(24,34,74),(26,76,36),(27,37,77)], [(1,78,38),(2,79,39),(3,80,40),(4,81,41),(5,55,42),(6,56,43),(7,57,44),(8,58,45),(9,59,46),(10,60,47),(11,61,48),(12,62,49),(13,63,50),(14,64,51),(15,65,52),(16,66,53),(17,67,54),(18,68,28),(19,69,29),(20,70,30),(21,71,31),(22,72,32),(23,73,33),(24,74,34),(25,75,35),(26,76,36),(27,77,37)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,81),(36,80),(37,79),(38,78),(39,77),(40,76),(41,75),(42,74),(43,73),(44,72),(45,71),(46,70),(47,69),(48,68),(49,67),(50,66),(51,65),(52,64),(53,63),(54,62)]])
54 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 9A | ··· | 9I | 9J | ··· | 9O | 27A | ··· | 27AA |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 27 | ··· | 27 |
size | 1 | 81 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 81 | 81 | 2 | ··· | 2 | 6 | ··· | 6 | 6 | ··· | 6 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | D9 | D27 | C3×D9 | C3×D27 | C32⋊C6 | C9⋊C6 | C27⋊C6 |
kernel | C32⋊D27 | C32⋊C27 | C27⋊S3 | C3×C27 | C32×C9 | C3×C9 | C33 | C32 | C32 | C3 | C9 | C9 | C3 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 9 | 6 | 18 | 1 | 2 | 6 |
Matrix representation of C32⋊D27 ►in GL8(𝔽109)
45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 51 | 22 | 108 | 108 | 0 | 0 |
0 | 0 | 87 | 29 | 1 | 0 | 0 | 0 |
0 | 0 | 79 | 63 | 0 | 0 | 0 | 1 |
0 | 0 | 46 | 16 | 0 | 0 | 108 | 108 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 108 | 108 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 108 | 108 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 108 | 108 |
63 | 79 | 0 | 0 | 0 | 0 | 0 | 0 |
30 | 93 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 102 | 23 | 5 | 0 | 0 |
0 | 0 | 7 | 17 | 104 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 99 | 7 | 59 | 27 |
0 | 0 | 0 | 0 | 102 | 92 | 82 | 32 |
0 | 0 | 0 | 0 | 92 | 102 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 99 | 0 | 0 |
59 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
82 | 50 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 82 | 0 | 0 | 0 | 0 |
0 | 0 | 50 | 77 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 77 |
0 | 0 | 0 | 0 | 0 | 0 | 50 | 82 |
0 | 0 | 0 | 0 | 27 | 77 | 0 | 0 |
0 | 0 | 0 | 0 | 50 | 82 | 0 | 0 |
G:=sub<GL(8,GF(109))| [45,0,0,0,0,0,0,0,0,45,0,0,0,0,0,0,0,0,1,0,51,87,79,46,0,0,0,1,22,29,63,16,0,0,0,0,108,1,0,0,0,0,0,0,108,0,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108,0,0,0,0,0,0,0,0,0,108,0,0,0,0,0,0,1,108],[63,30,0,0,0,0,0,0,79,93,0,0,0,0,0,0,0,0,10,7,0,0,0,0,0,0,102,17,0,0,0,0,0,0,23,104,99,102,92,7,0,0,5,18,7,92,102,99,0,0,0,0,59,82,0,0,0,0,0,0,27,32,0,0],[59,82,0,0,0,0,0,0,32,50,0,0,0,0,0,0,0,0,32,50,0,0,0,0,0,0,82,77,0,0,0,0,0,0,0,0,0,0,27,50,0,0,0,0,0,0,77,82,0,0,0,0,27,50,0,0,0,0,0,0,77,82,0,0] >;
C32⋊D27 in GAP, Magma, Sage, TeX
C_3^2\rtimes D_{27}
% in TeX
G:=Group("C3^2:D27");
// GroupNames label
G:=SmallGroup(486,17);
// by ID
G=gap.SmallGroup(486,17);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,224,824,867,8104,208,11669]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^27=d^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export